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Abstract. The semi-infinite Domb model with volume-dependent bulk exchange interactions 
I(") and modified exchange interactions on the free surface &(v)  = (1 + A)J(u)  is studied 
through a variational method based on the Bogoliubov inequality for the free energy. The 
phase diagram ofglobal temperature against A is obtained and it is shown that the orders of 
some transition lines depend on the value of the pressure. It is also shown that the phase 
diagram is qualitatively rather different from that obtained for systems having constant 
exchange interactions and first-order bulk behaviour. 

I. Introduction 

The semi-infinite king model on a rigid simple cubic lattice with modified exchange 
interaction on the free surface constitutes a simple model for the study of surface effects 
in magnetic materials (see [l] and references therein). The global phase diagram when 
the bulk undergoes a secohd-order transition is well understood. For a sufficiently high 
surface coupling enhancement the system orders on the surface before it orders in the 
bulk, whereas for low surface couplings the surface orders when the bulk does. In 
addition, all the critical lines are also of second order. However, the phase diagram may 
change for systems that undergo a first-order transition within the bulk. A general 
treatment within the framework of Landau theory has shown that the model can exhibit 
a surface-induced disordering transition where surface quantities present a critical 
behaviour although the bulk quantities are discontinuous [2 ,3 ] .  
On the other hand, compressible magnetic systems have also been the subject of 

many theoretical studies (see, e.g., [4,5]). It has been shown that the critical behaviour 
in the bulk is strongly dependent on the space boundary conditions as well as on the 
specific type of fluctuations (for a recent discussion of such effects, see, e.g., [6]). 
However, the mathematical complications in the calculations for these systems with 
realistic position fluctuations are rather involved. Nevertheless, some very simple 
models have been proposed in order to treat compressible Ising Hamiltonians such as 
the Domb model [7] and the Baker-Essam model [SI. When the effect of pure ion 
position fluctuations is considered to an extreme degree in the shearless Baker-Essam 
model at constant volume the bulk presents a renormalized second-order behaviour. In 
contrast, when the effect of volume fluctuations are taken into account as in the case of 
the Domb model, which includes a volume-dependent exchange parameter, the bulk 
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presents second- and first-order types of behaviour depending on the value of the 
pressure (see, e.g., [9]) .  In a realistic system, both types of fluctuations should be 
present and therefore the character of the transition will depend on which one of these 
predominates. 

In the present work we study the semi-infinite compressible king model. Of course, 
as the elastic effects have a long range, the physical properties of an elastic medium with 
a surface will also be quite sensitive to the space boundary conditions. Such effects, 
however, are not taken into account in this paper. We treat the semi-infinite Domb 
model by assuming that the average lattice spacingon the free surface is the same as that 
deep in the bulk. As this simple model displays both first- and second-order behaviour, 
the presence of a surface should affect the global phase diagram in different ways, 
depending on the order of the bulk transition. Moreover, the first-order bulk behaviour 
is accomplished by a volume discontinuity (also involvinga discontinuity in the exchange 
interactions) implying that the effective mean-field boundary conditions at the surface 
also change in a discontinuous way. Such an effect has not been treated in the previous 
framework of Landau theory [2,3]. 

In order to obtain the thermodynamic properties and the magnetization profiles of 
the semi-infinite Domb model we employ the mean-field approximation by means of 
a variational method based on the Bogoliubov inequality for the free energy. The 
Hamiltonian model, the formalism and the bulk phase diagram in the temperature- 
pressure plane are given in section 2. In section 3 global phase diagrams that take into 
account the presence of the free surface are discussed and compared with the diagram 
obtainedformodelshavingconstant hulkexchangeinteractions [2,3]. A briefconclusion 
is given in section 4. 
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2. Model, formalism and bulk phase diagram 

2.1.  The Hamiltonian model 

A general compressible king model can he defined by the following Hamiltonian: 

H =  - 2 jcIc,I)vJ + 'c rp,l(IrjI) (1) 
( i i )  i.i 

where the first sum includes a magnetic term with nearest-neighbour interactionsof ions 
withspini(u, = 21) andthe elasticenergyisgiven by thesecondsum (thecorresponding 
kinetic energy term has been suppressed). The elastic energy and the exchange integral 
depend on the relative positions of the ions r,i = ri - rJ,. The Domb model is obtained by 
expanding the above Hamiltonian about the equilibnum energy and by neglecting the 
local position fluctuations. The model (1) may then be written as (for further details see 
[61) 

H = H L + H ,  (2) 

HL = " C ( V  - U0)* (3) 

with the purely elastic term H ,  given by 

where N 3  is the total number of sites in the semi-infinite simple cubic structure, U is the 
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volume of a unit cell, uo is a positive parameter and cis a positive constant related to the 
inverse of the compressibility of the lattice. The effective spin Hamiltonian is 

where, in the infinite Domb model, we have 

J(u) = l o  - J , ( u  - u O )  = J i j ( ~ )  ( 5 )  
with Jo and J 1  being positive constants. In  order to treat the Domb model with a free 
surface we have simply to assume that the exchange interactions Jji(u) for nearest- 
neighbour spins in the bulk are given by equation (5) while for nearest-neighbour spins 
on the free surface the exchange interactions take the value 

Js(u)  = (1 + A)J(u). (6)  
Here A is the surface coupling enhancement. 

2.2. Formalism 
In order to obtain the free energy related to HI we use a variational method based on 
the Bogoliubov inequality [lo] 

FI(T, U )  Fo(T) + ( H  - HO)O = Q ( Y i ) ,  (7) 
where Fu(T) is the free energy corresponding to the trial Hamiltonian Ho, the brackets 
indicate an average over an ensemble defined by Hu, and yi are variational parameters. 
An approximate value of the free energy is obtained by minimizing Q with respect to yi. 

The mean-field approximation is obtained by considering 
N1 

Ho = - 2 yio; .  (8) 
i= 1 

Thus, we have 
N 1  

Fo(T) = - k B T x  ln(2coshpy;) 

(9)  
;= 1 

where p = l / kBT and m; = tanhpy;. Assuming that the magnetizations in the planes 
parallel to the free surface are homogeneous (i.e. in the ferromagnetic phase where 
J ( u )  > 0) we get 

cP(yi) = -N*kBT 2 ln(2 coshpy;) + N 2  2 yimi 
N N 

i = 1  ,=1 

N N 

- 2NZJs(u)m: - 2NZJ(u) 2 m! - NZJ(u)  2 m i m i f l  (10) 

where i now labels layers parallel to the surface. Minimization of equation (10) leads to 

yI = ~ J s ( u ) ~ I  + J(u)mz (11) 

m l  = tanhpy, (12) 

; = 2  i= I 
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Figure 1. Sketch of the bulk (T, p)phasediagram. 
The lricritical point (T , ,p , )  separates regions of 
first- and second-order transitions: bold full 
curves, first-order transitions; full lines, second- 
order transitions. . 

for, respectively, the variational parameter and the magnetization of the free surface, 
and 

yi =4J(u)mj + J ( u ) ( m , - ,  + m i + , )  (13) 
mi = tanh Byj  (14) 

where the last two equations hold for i 2 2. The king free energy F, is then given by 
equations (10)-(14) and we have for the total free energy 

where FL is also given by the right-hand side of equation (3). 
As the bulk transition always occurs at definite values of temperature and pressure, 

it is more convenient to work with the Gibbs potential, which can be easily obtained by 
performing the Legendre transformation, 

(16) 

F(T, U) = &(T, U) + Fr(T, U) (15) 

G(T,p) = F(T, U) + N3pu 
where the pressurep is defined as 

p = - N-3 aF(T, u) /au.  

The bulk free energy per spin g, is obtained from (16) via 
gdT,  P) = lim G(T, p)/N3 (18) 

N- or 

Finally, the antiferromagnetic case (i.e. for pressure values so that J ( u )  < 0) is 
obtained in a quite analogous way. We have to consider two sublattices and two different 
variational parameters inside each plane parallel to the surface. If m, is assumed to be 
the sublattice magnetization we obtain the same formulae above with lJ(u)l substituted 
for J(u). 

2.3. Bulk phase diagram 

The bulk phase diagramin the temperature-pressure planeof the present model (which, 
for completeness, is shown in figure 1) has already been studied according to this 
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approximation 191. It isentirely symmetric with respect topo = -Joc/J,. There are first- 
order transition lines where the magnetization and the volume undergo discontinuous 
changes: a vertical ferromagnetic-antiferromagnetic transition line and two symmetric 
curves of ferromagnetioparamagnetic (on the right) and antiferromagnetic-para- 
magnetic (on the left) transitions. Although these lines are computed numerically, the 
second-order lines and the tricritical points can be obtained analytically through a 
Landau expansion of the Gibbs free energy giving, respectively, 

TEB = ?6J0/kB ? 6Jlp/kBc (20) 

T, = 54J:/kBc. (21) 

In equation (20) the upper (lower) sign holds for the ferromagnetic (antiferromagnetic) 
phase. It should be mentioned that the minor differences between the equations above 
and those of 191 result from the fact that here we are writing the elastic energy and the 
exchange interactions in terms of the volume U while there they are given in terms of the 
average lattice spacing a (however, if the volume is expanded about uo, U - uo is, up to 
first order, just proportional to the corresponding lattice spacing a - ao). 

3. Global phase diagram 

As the results for the ferromagnetic and antiferromagnetic phases are analogous, we 
shall discuss below only the case J ( u )  > 0, where the bulk is ferromagnetic. The main 
qualitative features are the same whenJ(u) < 0. 

3.1. Thecasep a p t  

In this case, the bulk undergoes a second-order phase transition (see figure 1) at T,, 
given by equation (20). For T > T,, andclose to the surface transition the magnetization 
m ,  can be calculated by inverting equations (12) and (14) and then expanding for 
miQ 1. We get 

m2 = aml + bm: (22) 

mi = Xim2 - X i - , m ,  i s 3  (23) 

where 

a = l/&l(u) - 4J,(u) 

b = 1/3@(u) 

and we define 

z = ( l / p ) J ( u )  - 4. (244 

Here Xi = X,(L) are polynomials of degree i - 2 in L (with z defined above) obeying the 
following recursion relation: 



7408 J A Plascak and E C Valadares 

Figure2. Global (?', A) phase diagramforp 2 p , ,  
All transition lines are second order and they are 
denoted by 0, E and S. and the surface tram 

.,, ,. ,,,,. ,,.,., ,.,sitiodne.S-are gcven by equations (20) and (29). 
respectively. 

Figure 3. Global (7, A) phase diagram for two 
different values of pressure: p, > pI  z pi. The 
transitions0 andE are first order while S issecond 
order. The results were taken for J:&c = 0.1. 

'2 kBT?[Jo = 4.0, pl.l,{Joc = -0,3!, A ,  = 0.32; 

I L I  
, 

A k,T:/Jo =2.O,p2Jl/Joc= -0.17, A 2 = 0 . 6 6 .  
- 1  0 "A, A, I 

x, = zxi_l - Xg-2 
x2 = 1 x, = 2. 

m,,, =mB=O;(X,/X,-,),,, = y  

i24 

Taking the limit i+ m we have 

and for temperatures such that z 2 2 equation (25) leads to 

y = $ ( Z  + (r2 - 4)',']. 

Finally, from equations (22) and (23) we obtain 
(27) 

m: = (1 - ay)/by.  (28) 

1 - a y = O  (29) 

The surface critical temperature T,, is then given by 

with the surface critical exponent B1 = 1. The global ('f, A) phase diagram for a given 
value of the pressurep is shown in figure 2 where the reduced temperature Tis defined 
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Fignre 4. Sketch of the global (p, A) phase dia- 
gramformodelshavingfirst-orderbulk behaviour 
at T:, with constant bulk exchange interactions 
according to 131. The surface tramition line S is 
also first order. The surface magnetization m, is 
continuous_at E (A > A), discontinuous at 0, 
(A < A  < A) andgoescontinuously tozeroato,  
(A s A). At A = Ac, m, = mB. 

Figure 5. Generic shapes of the magnetization 
profile related to the phase diagram depicted in 
figure 4 (a), in the ordered state at the transition 
E and 0,  for Ac c A < A; (b), in the disordered 
state at the transition E; {c), in the ordered state 
at the transition 0, for A C A < 4; (d), in the 
ordered state at the transition 0,. In figures (b 
and (d) there is an interface at i = i and i = /, 
respectively. 

by?= kBT/Jo. At ?& = ?cBwegetthemean-fieldvalueA, = 0.25,whichisindependent 
of the pressure and, from equation (24c), we have z = 2 meaning that the lines 0, E and 
S meet in a critical endpoint at the surface. So, as expected, all the known features 
concerning the criticality at surfaces with the bulk undergoing a second-order transition 
are obtained in this case. Moreover, at p = p t .  TcB = T, and we have critical behaviour 
at the surface at a tricritical transition in the bulk [I l l .  

3.2. Thecasep,,ip < p ,  

In this range the bulk shows a first-order behaviour at a temperature T* where the 
magnetization and the volume undergo discontinuous changes. This implies that the 
exchange interaction and the relative position of the sites on the free surface are also 
discontinuous. In thiscase, however, T* has to be computed numerically for some given 
values of the theoretical parameters. The magnetization profile may also be obtained by 
investigating the set of equations (12) and (14) on a computer. The global ( T ,  A) phase 
diagram thus obtained is shown in figure 3 for two different values of pressure. For 
completeness we also show in figure 4 a sketch of the global phase diagram and, in figure 
5, the generic shapes of the magnetization profile obtained according to an equivalent 
mean-field-like approximation for models having a first-order bulk behaviour with 
constant bulkexchange interactions (for further details see 131). In order to compare the 
present results with those of [3] we discuss below each line of the phase diagram in figure 
3 separately. 
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Let us first consider the transition Line E, which is now first-order. Because of 
the discontinuity of J(u), the magnetization m, ,  as well as the whole profile. is also 
discontinuous at E. However, except for the ordered bulk magnetization m g ,  the profile 
jumps from a finite value to another finite value as shown in figure 6 .  The generic shape 
of the profile in the ordered state is the same as that in figure 5(a) while in the disordered 
state it goes smoothly to zero as a function of i without a characteristic length scale 
separating the ordered surface layer from the disordered bulk as in figure 5(6). 

At the transition line 0, which is also first order, the surface magnetization (as well 
as the bulk one) jumps from mr # 0 in the ordered state to zero in the disordered one. 
The shape of the order parameter profile in the ordered state is the same as those of 
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figures 5(a) and 5(c) and we obtain, in this case, the same qualitative features of the 
transition designated by 0% in figure 4. However, this model does not exhibit a surface 
disorderingtransition where the surface quantitiesundergo a critical behaviour while the 
bulk quantities are discontinuous. In figure 7 we show the ordered surface magnetization 
mf at T = T *  as a function of A for two transition temperatures. We note that although 
mr is small asJs + 0 it never goes to zero. It can be shown that m ,  = 0 is not a solution 
of equations (12) and (14) as long as m,# 0. Thus, the magnetization profiles, such as 
that shown in figure 5(d) ,  cannot be predicted by this model. 

Finally, the phase boundary S is determined by magnetization profiles such that gs = 
0. For T > T*, we have mB = 0 and through an expansion of the surface free energy (19) 
we find indeed that gs = 0 only if m ,  = 0. Thus, unlike the model treated in [3], the 
surface transition in this case remains second order with T, given by the same equation, 
(29). At A = z\, T, = T*,  where z\ > A, is now dependent on pressure (see figure 3). 
In this case, however, the lines 0, E and S do not meet in a kind of surface critical 
endpoint once some unphysical solutions for T, < T* and A < are obtained from 
equation (29). At A = A,, m, = mB and the extrapolation length goes to infinity. 

Most of the differences concerning the phase diagram and magnetization profiles for 
both the models discussed above, such as the behaviour at the transition lines 0 and E, 
can be ascribed to the fact that in the present model the first-order transition is induced 
by the pressure with a discontinuity in the exchange interaction J(u).  The parameters in 
the Landau free-energy expansion of [3] do not take into account, in principle, such a 
dependence. For example, by expanding the total free energy (16) close to the tricritical 
point (p  C p,)  and taking the continuum limit we obtain a free-energy function whose 
parameters depend on T and p. Following the usual procedure of minimizing G we 
obtain, at the transition 0, a cubic equation for ( m f ) *  that has always an ordered 
solution mr # 0, as long as mB # 0, for any value of A -1, and the surface is indeed 
not critical along this line. Thus, the Landau theory procedure in the continuum limit 
can also be extended in order to treat more general models such as the present one. On 
the other hand, the second-order transition line Scan be understood once for T >  T*, 
mB = 0 andfromequations(5) and (17) it can beshown that the bulkexchange interaction 
is independent of A for a given value of the pressurep. Thus, we have in this case just a 
simple semi-infinite king model, which should exhibit a surface ordering that is critical. 
On the contrary, for systems havinga bulk first-order behaviour, such as the one treated 
in [3], it implies that the surface is also described by the same model on a lattice of 
dimension d - 1. Therefore, the mean-field solutionswill give a similar behaviour to the 
bulk for the criticality at the surface. 

4. Concluding remarks 

The semi-infinite Domb model with bulk exchange interactions J ( u )  and modified 
exchange interactionson the freesurfaceJs(u) = (1 + A)J(u)  has been studied within a 
variational approach based on the Bogoliubov inequality for the free energy. Although 
this model is rather too simple to give a true picture of a realistic semi-infinite com- 
pressible Ising model it can be considered as a starting point for the study of surface 
effects in models with a first-order transition in the bulk caused by discontinuities in the 
volume interactions and in the exchange interactions. In other respects, as the mean- 
field approach can account for the main features of the critical behaviour at the surfaces 
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of rigid lattices we expect that this approximation should also satisfactorily describe the 
present more general model, 

It has been shown that when the bulk undergoes a second-order phase transition, 
the global (f, A) phase diagram is completely analogous to that of the rigid model, 
which exhibits only second-order transition lines. However, at the first-order bulk 
transition, the lines 0 and E in figure 3 are now first order. The surface magnetization 
m, is continuous at S and behaves like the bulk magnetization wB at 0 and is discon- 
tinuous, but finite, at E. The phase diagram in this case is qualitatively different from 
that obtained for systems with a first-order bulk behaviour but having constant bulk 
exchange interactions. It is also expected that the global phase diagram of the semi- 
infinite Baker-Essam model should be similar to that shown in figure 2 once this model 
presents only second-order bulk behaviour. 

Because of the simple form assumed for J s ( u ) ,  that is, Js( U) is simply proportional to 
J(u), theresultsfortheglobalphasediagramarequalitativelythesameforferromagnetic 
or antiferromagnetic bulk ordering. Nevertheless, more general models can also be 
studied theoretically within the present context by changing the surface interaction Js.  
One can consider, for instance, Js = (1 + A)Jo (which is volume independent), which 
allows for a ferromagnetic surface coupling with an antiferromagnetic bulk ordering. 

Finally, an infinite pseudospin compressible king model Hamiltonian, similar to the 
one considered here, has been proposed previously to study the pressure-temperature 
phase diagram of the hydrogen-bonded ferroelectric crystal CsD,PO4 [12]. In these 
crystals, an antiferromagnetic phase appears to be induced by the pressure [13. 141. 
Thus, experimental results for the critical surface behaviour in such crystals or similar 
magnetic materials would be highly valuable. 

Acknowledgments 

This work has been partially supported by the Brazilian Agency Conselho Nacional de 
Desenvolvimento Cientifico e Tecnologic&NPq. The authors would like to thank 
Professor F. C. Sa Barreto for a critical reading of the manuscript. 

References 

[I] Binder K 1983 Phase Transitions and Criftcal Phenomena vol 8, ed C Domb and J L Lebowitz (London: 

[2] Lipowsky R 1982 Phys. Reo. Left. 49 1575 
[3] Lipowsky R and Speth W 1983 Phys. Reu. B 28 3983 
141 Bergman D J and Halperin B I 1976 Phys. Rev. B 13 2145 
[51 Bruno J and Sak J 1980 Phys. Rev. B 22 3302 
[6] Henriques V B and Salinas S R 1987 J. Phys. C: SolidSfare Phys. 20 2415 
[7] Domb C 1956 J. Chem. Phys. 25 783 
[SI Baker G A and Essam J W 1970 Phys. Rev. Left. 24 447 
[9] Salinas S R 1974 J. Phys. C: Solid Sfare Phys. 7 241 

Academic) 

, 

[ lo]  Falk H 1970Am. I. Phys. 38 858 
[I l l  Binder K and Landau D P 1976 SurJ Sri. 61 577 
1121 Plascak J A, Sa Barreto SA F C and Salinas S R 1982 SolidSfnfe C o m m w .  42 429 
[I31 Gesi K and Ozawa K 1978Japon. I .  Appl.  Phys. 17 435 
[14] YasudaN,FujimotoS, OkamotoMandShimizuH 1979Phys. Reo. B202755 


